SATNet:

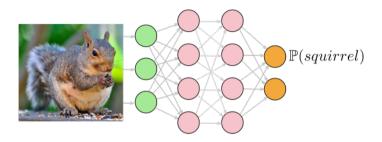
Bridging deep learning and logical reasoning using a differentiable satisfiability solver

Po-Wei Wang ¹ Priya L. Donti ¹ Bryan Wilder ² J. Zico Kolter ^{1,3}

Ð	во	sci	₁∕

¹ School of Computer Science, Carnegie Mellon University ² School of Engineering and Applied Sciences, Harvard University ³ Bosch Center for Artificial Intelligence

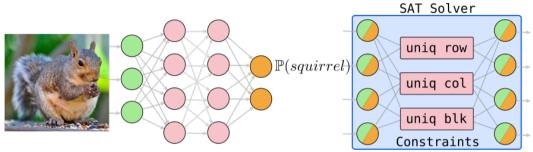
Integrating deep learning and logic



Deep Learning

No constraints on output Differentiable Solved via gradient optimizers

Integrating deep learning and logic



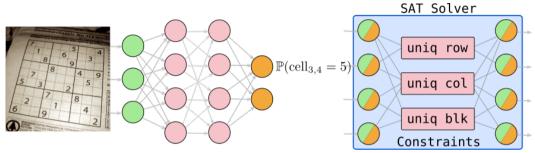
Deep Learning

No constraints on output Differentiable Solved via gradient optimizers

Logical Inference

Rich constraints on output Discrete input/output Solved via tree search

Integrating deep learning and logic

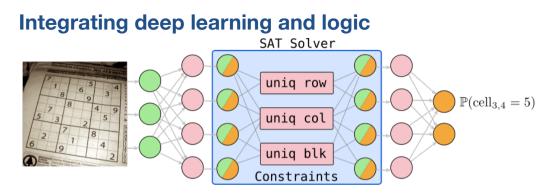


Deep Learning

No constraints on output Differentiable Solved via gradient optimizers

Logical Inference

Rich constraints on output Discrete input/output Solved via tree search

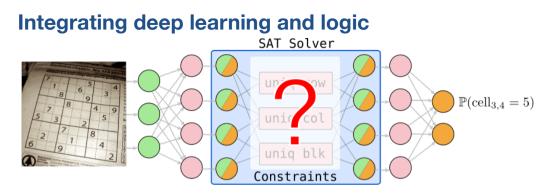


Deep Learning

No constraints on output Differentiable Solved via gradient optimizers

Logical Inference

Rich constraints on output Discrete input/output Solved via tree search



Deep Learning

No constraints on output Differentiable Solved via gradient optimizers

+

Logical Inference

Rich constraints on output Discrete input/output Solved via tree search

This talk is not about ...

This talk is not about ...

Not about learning to find SAT solutions [Selsam et al. 2019]

- but about learning both constraints and solution from examples

This talk is not about ...

Not about learning to find SAT solutions [Selsam et al. 2019]

- but about learning both **constraints** and **solution** from examples

Not about using DL and SAT in a multi-staged manner

- doing so requires prior knowledge on the stucture and constraints
- further, current SAT solvers cannot accept **probability inputs**

This talk is about

- A layer that enables end-to-end learning of **both** the **constraints** and **solutions** of logic problems within deep networks...

This talk is about

- A layer that enables end-to-end learning of **both** the **constraints** and **solutions** of logic problems within deep networks...
- A smoothed **differentiable (maximum) satisfiability solver** that can be integrated into the loop of deep learning systems.



Review of SAT problems

Example SAT problem:

$$v_2 \wedge (v_1 \vee \neg v_2) \wedge (v_2 \vee \neg v_3)$$

Review of SAT problems

Example SAT problem:

Review of SAT problems

Example SAT problem:

Typical SAT: Clause matrix given, find satisfying assignment Our setting: Clause matrix is parameters of the layer (to be learned)

MAXSAT Problem

MAXSAT is the optimization variant of SAT solving

SAT: Find feasible v_i s.t. $v_2 \wedge (v_1 \vee \neg v_2) \wedge (v_2 \vee \neg v_3)$

MAXSAT: maximize # of satisfiable clauses

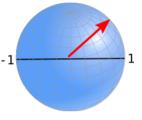
MAXSAT Problem

MAXSAT is the optimization variant of SAT solving

SAT: Find feasible v_i s.t. $v_2 \wedge (v_1 \vee \neg v_2) \wedge (v_2 \vee \neg v_3)$ -1 **MAXSAT:** maximize # of satisfiable clauses

Relax the binary variables to smooth & continuous spheres

$$v_i \in \{+1, -1\} \xrightarrow{equiv} |v_i| = 1, v_i \in \mathbb{R}^1 \xrightarrow{relax} ||v_i|| = 1, v_i \in \mathbb{R}^k$$



MAXSAT Problem

MAXSAT is the optimization variant of SAT solving

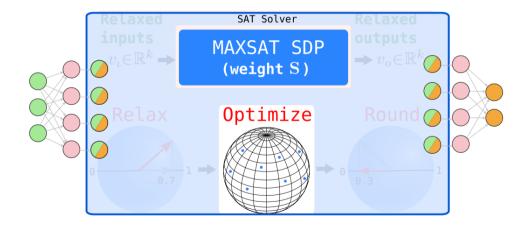
SAT: Find feasible v_i s.t. $v_2 \wedge (v_1 \vee \neg v_2) \wedge (v_2 \vee \neg v_3)$ -1 **MAXSAT:** maximize # of satisfiable clauses

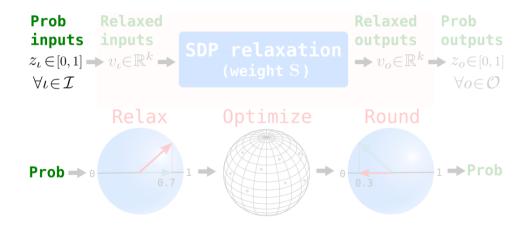
Relax the binary variables to smooth & continuous spheres

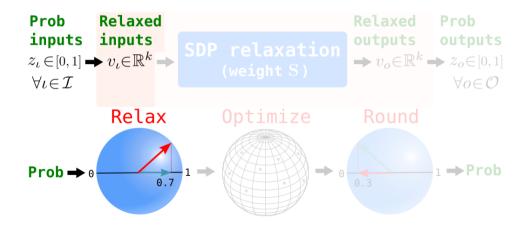
$$v_i \in \{+1, -1\} \xrightarrow{equiv} |v_i| = 1, v_i \in \mathbb{R}^1 \xrightarrow{relax} ||v_i|| = 1, v_i \in \mathbb{R}^k$$

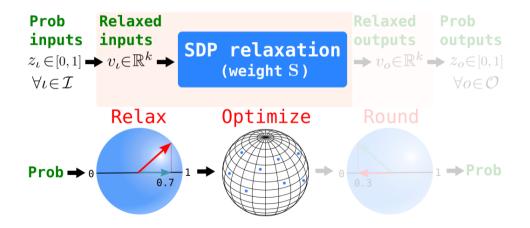
Semidefinite relaxation (Goemans-Williamson, 1995), $X = V^T V$

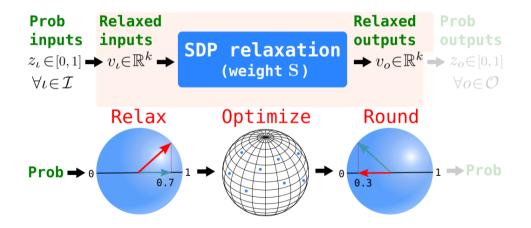
minimize $\langle S^T S, X \rangle$, s.t. $X \succeq 0$, $\operatorname{diag}(X) = 1$.

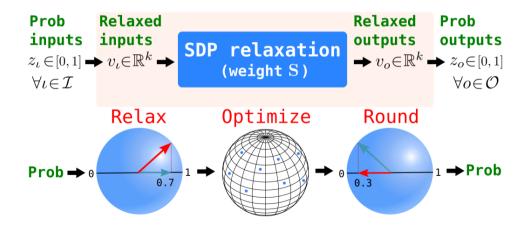


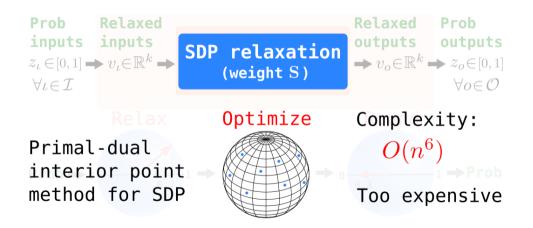












Fast solution to MAXSAT SDP approximation

Efficiently solve via low-rank factorization $X = V^T V$, $V \in \mathbb{R}^{k \times n}$, $||v_i|| = 1$ (a.k.a. Burer-Monteiro method), and block coordinate descent iters

$$v_i = -\text{normalize}(VS^T s_i - ||s_i||^2 v_i).$$

Fast solution to MAXSAT SDP approximation

Efficiently solve via low-rank factorization $X = V^T V$, $V \in \mathbb{R}^{k \times n}$, $||v_i|| = 1$ (a.k.a. Burer-Monteiro method), and block coordinate descent iters

$$v_i = -\text{normalize}(VS^T s_i - ||s_i||^2 v_i).$$

For $k > \sqrt{2n}$, the non-convex iterates are guaranteed to converge to global optima of SDP [Wang et al., 2018; Erdogdu et al., 2018]

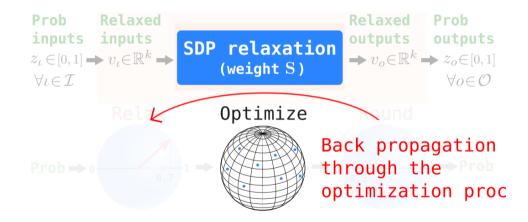
Fast solution to MAXSAT SDP approximation

Efficiently solve via low-rank factorization $X = V^T V$, $V \in \mathbb{R}^{k \times n}$, $||v_i|| = 1$ (a.k.a. Burer-Monteiro method), and block coordinate descent iters

$$v_i = -\text{normalize}(VS^T s_i - ||s_i||^2 v_i).$$

For $k > \sqrt{2n}$, the non-convex iterates are guaranteed to converge to global optima of SDP [Wang et al., 2018; Erdogdu et al., 2018]

Complexity reduced from $O(n^6 \log \log \frac{1}{\epsilon})$ of interior point methods to $O(n^{1.5}m \log \frac{1}{\epsilon})$ of our method, where *m* is #clauses.



When converged, the procedure satisfies the fixed-point equation

$$v_i = -\text{normalize}(VS^T s_i - ||s_i||^2 v_i), \ \forall i$$

When converged, the procedure satisfies the fixed-point equation

$$v_i = -\text{normalize}(VS^T s_i - ||s_i||^2 v_i), \forall i$$

The fixed-point equation of the block coordinate descent provides an implicit function definition of the solution [Amos et al. 2017]

$$F_i(S, V(S)) = v_i + \text{normalize}(VS^T s_i - ||s_i||^2 v_i) = 0, \ \forall i$$

When converged, the procedure satisfies the fixed-point equation

$$v_i = -\text{normalize}(VS^T s_i - ||s_i||^2 v_i), \ \forall i$$

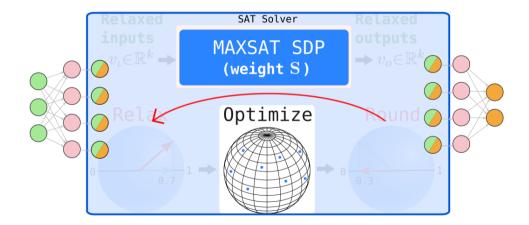
The fixed-point equation of the block coordinate descent provides an implicit function definition of the solution [Amos et al. 2017]

$$F_i(S, V(S)) = v_i + \text{normalize}(VS^T s_i - ||s_i||^2 v_i) = 0, \ \forall i$$

Thus, can apply implicit function theorem on the total derivatives

$$\frac{\partial \vec{F}(\vec{S},\vec{V}(S))}{\partial \vec{S}} = 0 \implies \frac{\partial \vec{F}(\vec{S},\vec{V})}{\partial \vec{S}} + \frac{\partial \vec{F}(\vec{S},\vec{V})}{\partial \vec{V}} \cdot \frac{\partial \vec{V}}{\partial \vec{S}} = 0$$

Solve the above **linear system** of $\partial \vec{V} / \partial \vec{S}$ to backprop



Low-rank regularization on ${\cal S}$

- Doubly-exponentially many possible Boolean functions!

Low-rank regularization on ${\boldsymbol{S}}$

- Doubly-exponentially many possible Boolean functions!
- Low-rank \Rightarrow Regularize the complexity through number of clauses

Low-rank regularization on ${\boldsymbol{S}}$

- Doubly-exponentially many possible Boolean functions!
- Low-rank \Rightarrow Regularize the complexity through number of clauses

Auxiliary variable (hidden nodes)

- Only SDP with diagonal constraints, limiting representation

Low-rank regularization on ${\boldsymbol{S}}$

- Doubly-exponentially many possible Boolean functions!
- Low-rank \Rightarrow Regularize the complexity through number of clauses

Auxiliary variable (hidden nodes)

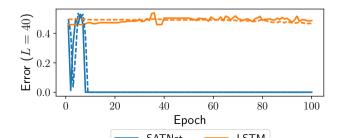
- Only SDP with diagonal constraints, limiting representation
- Adding auxiliary variable (gadget) increases representation power

Illustration: Learning Parity from single bit supervision

- Parity problem is surprisingly hard for most deep networks to learn [Shalev-Swartz et al., 2017]

Illustration: Learning Parity from single bit supervision

- Parity problem is surprisingly hard for most deep networks to learn [Shalev-Swartz et al., 2017]
- Chained (recurrent) SATNet-based network learns parity function for up to length 40 strings from 10K examples



5	3			7					5	3	4
6			1	9	5				6	7	2
	9	8					6		1	9	8
8				6				3	8	5	9
4			8		3			1	4	2	6
7				2				6	7	1	3
	6					2	8		9	6	1
			4	1	9			5	2	8	7
				8			7	9	3	4	5

5	3	4	6	7	8	9	1	2
6	7	2	1		5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6		5
3	4	5	2	8	6	1	7	9

5	3			7					5	3	4	6	7
6			1	9	5				6	7	2	1	9
	9	8					6		1	9	8	3	4
8				6				3	8	5	9	7	6
4			8		3			1	4	2	6	8	5
7				2				6	7	1	3	9	2
	6					2	8		9	6	1	5	3
			4	1	9			5	2	8	7	4	1
				8			7	9	3	4	5	2	8

- Learning 9x9 Sudoku from 9K examples
- Single SATNet layer on

one-hot-encoded input puzzles

Model	Train	Test
ConvNet	72.6%	0.04%
SATNet (ours)	99.8%	98.3 %

Original Sudoku.

5	3			7					5	3	4
6			1	9	5				6	7	2
	9	8					6		1	9	8
8				6				3	8	5	9
4			8		3			1	4	2	6
7				2				6	7	1	3
	6					2	8		9	6	1
			4	1	9			5	2	8	7
				8			7	9	3	4	5

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

- Learning 9x9 Sudoku from 9K examples
- Single SATNet layer on

one-hot-encoded input puzzles

- Free parameters are ${\cal S}$ matrix of clauses, randomly initialized

Model	Train	Test
ConvNet	72.6%	0.04%
SATNet (ours)	99.8%	98.3 %

Original Sudoku.

5	3			7					5	3	4
6			1	9	5				6	7	2
	9	8					6		1	9	8
8				6				3	8	5	9
4			8		3			1	4	2	6
7				2				6	7	1	3
	6					2	8		9	6	1
			4	1	9			5	2	8	7
				8			7	9	3	4	5

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

- Learning 9x9 Sudoku from 9K examples
- Single SATNet laver on

one-hot-encoded input puzzles

- Free parameters are S matrix of clauses, randomly initialized

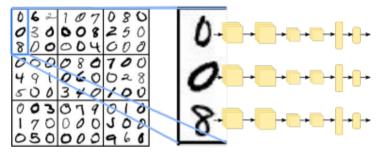
st	Test	Train	Model
4%	0.04%	72.6%	ConvNet
3%	98.3%	99.8%	SATNet (ours)
3	98.3	99.8%	SATNet (ours)

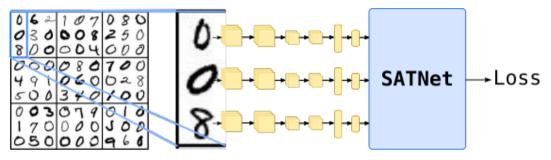
Original Sudoku.

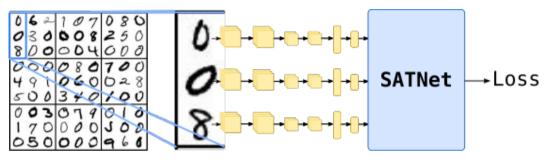
Train	Test
0%	0%
99.7%	98.3 %
	0%

Permuted Sudoku



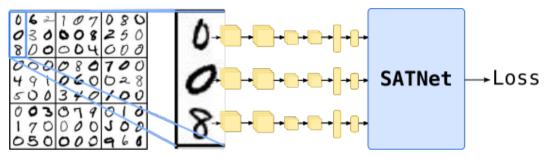






Model	Train	Test
ConvNet	0.31%	0%
SATNet (ours)	93.6%	63.2%

 Getting example "correct" requires correct Sudoku solution and predicting all MNIST test digits correctly



Model	Train	Test
ConvNet	0.31%	0%
SATNet (ours)	93.6%	63.2%

- Getting example "correct" requires correct Sudoku solution *and* predicting all MNIST test digits correctly

- 85% accuracy on correct ConvNet input

Code and Colab

16

Code available at https://github.com/locuslab/SATNet

CO A Learning and Solving Sudoku via SATNet.ipynb				
CODE TEXT A CELL CELL				
Table of contents Code snippets Files X	0	<pre>!git clone https://github.com/locuslab/SATNet %cd SATNet !python setup.py develop > install.log 2>&1</pre>		
Introduction to SATNet	ipython setup.py develop > install.log 2>81			
Building SATNet-based Models	C→	Cloning into 'SATNet' remote: Enumerating objects: 47, done. remote: Counting objects: 100% (47/47), done.		
The Sudoku Datasets	remote: Compressing objects: 100% (36/36), done. remote: Total 47 (delta 12), reused 43 (delta 8), Unpacking objects: 100% (47/47), done. /content/SATNet			
Sudoku				
One-hot encoded Boolean Sudoku	[]	lwget -cq powei.tw/sudoku.zip && unzip -qq sudoku.zip lwget -cq powei.tw/parity.zip && unzip -qq parity.zip		
MNIST Sudoku		wyet -ed power.tw/party.zip && unzip -gd party.zip		
The 9x9 Sudoku Experiment	[]	import os import shutil		

Conclusion

We presented

- SATNet, the first differentiable MAXSAT solver as a layer

Conclusion

We presented

- SATNet, the first differentiable MAXSAT solver as a layer
- can be integrated into the loop of deep learning systems whenever neurons have logical constraints, and it learns both constraints and solutions solely from examples

Conclusion

We presented

- SATNet, the first differentiable MAXSAT solver as a layer
- can be integrated into the loop of deep learning systems whenever neurons have logical constraints, and it learns both constraints and solutions solely from examples

Possible extensions:

- Incorporating known rules into the system
- Exploiting structures of the clause matrix

Poster at Pacific Ballroom #26