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This
talk
is not about . . .

Not about learning to find SAT solutions [Selsam et al. 2019]
- but about learning both constraints and solution from examples

Not about using DL and SAT in a multi-staged manner
- doing so requires prior knowledge on the stucture and constraints

- further, current SAT solvers cannot accept probability
inputs

3



This
talk
is not about . . .

Not about learning to find SAT solutions [Selsam et al. 2019]
- but about learning both constraints and solution from examples

Not about using DL and SAT in a multi-staged manner
- doing so requires prior knowledge on the stucture and constraints

- further, current SAT solvers cannot accept probability
inputs

3



This
talk
is not about . . .

Not about learning to find SAT solutions [Selsam et al. 2019]
- but about learning both constraints and solution from examples

Not about using DL and SAT in a multi-staged manner
- doing so requires prior knowledge on the stucture and constraints

- further, current SAT solvers cannot accept probability
inputs

3



This
talk
is
about
- A layer that enables end-to-end learning of both the constraints

and solutions of logic problems within deep networks...

- A smoothed differentiable
(maximum)
satisfiability solver
that can be integrated into the loop of deep learning systems.
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Review
of
SAT problems

Example SAT problem:

v2 ∧ (v1 ∨ ¬v2) ∧ (v2 ∨ ¬v3)

⇓

S =

0 1 0
1 −1 0
0 1 −1

 v2
v1 ∨ ¬v2
v2 ∨ ¬v3

Typical SAT: Clause matrix given, find satisfying assignment
Our setting: Clause matrix is parameters of the layer (to be learned)
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MAXSAT Problem

MAXSAT is the optimization variant of SAT solving

SAT: Find feasible vi s.t. v2 ∧ (v1 ∨ ¬v2) ∧ (v2 ∨ ¬v3)
MAXSAT: maximize # of satisfiable clauses

Relax the binary variables to smooth & continuous spheres

vi ∈ {+1,−1} equiv−−−→ |vi | = 1, vi ∈ R1 relax−−→ ∥vi∥ = 1, vi ∈ Rk

Semidefinite
relaxation (Goemans-Williamson, 1995), X = V TV

minimize ⟨STS ,X ⟩, s.t. X ⪰ 0, diag(X ) = 1.

6



MAXSAT Problem

MAXSAT is the optimization variant of SAT solving

SAT: Find feasible vi s.t. v2 ∧ (v1 ∨ ¬v2) ∧ (v2 ∨ ¬v3)
MAXSAT: maximize # of satisfiable clauses

Relax the binary variables to smooth & continuous spheres

vi ∈ {+1,−1} equiv−−−→ |vi | = 1, vi ∈ R1 relax−−→ ∥vi∥ = 1, vi ∈ Rk

Semidefinite
relaxation (Goemans-Williamson, 1995), X = V TV

minimize ⟨STS ,X ⟩, s.t. X ⪰ 0, diag(X ) = 1.

6



MAXSAT Problem

MAXSAT is the optimization variant of SAT solving

SAT: Find feasible vi s.t. v2 ∧ (v1 ∨ ¬v2) ∧ (v2 ∨ ¬v3)
MAXSAT: maximize # of satisfiable clauses

Relax the binary variables to smooth & continuous spheres

vi ∈ {+1,−1} equiv−−−→ |vi | = 1, vi ∈ R1 relax−−→ ∥vi∥ = 1, vi ∈ Rk

Semidefinite
relaxation (Goemans-Williamson, 1995), X = V TV

minimize ⟨STS ,X ⟩, s.t. X ⪰ 0, diag(X ) = 1.

6



SATNet: MAXSAT SDP as
a
layer
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Fast
solution
to
MAXSAT SDP approximation

Efficiently solve via low-rank factorization X = V TV , V ∈ Rk×n , ∥vi∥ = 1

(a.k.a. Burer-Monteiro method), and block coordinate descent iters

vi = −normalize(VST si − ∥si∥2vi).

For k >
√
2n, the non-convex iterates are guaranteed to converge to

global optima of SDP [Wang et al., 2018; Erdogdu et al., 2018]

Complexity reduced from O(n6 log log 1
ϵ ) of interior point methods to

O(n1.5m log 1
ϵ ) of our method, where m is #clauses.
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Differentiate
through
the
optimization
problem
When converged, the procedure satisfies the fixed-point equation

vi = −normalize(VST si − ∥si∥2vi), ∀i

The fixed-point equation of the block coordinate descent provides an
implicit function definition of the solution [Amos et al. 2017]

Fi(S ,V (S )) = vi + normalize(VST si − ∥si∥2vi) = 0, ∀i
Thus, can apply implicit function theorem on the total derivatives

∂F⃗ (S⃗ , V⃗ (S ))

∂S⃗
= 0 =⇒ ∂F⃗ (S⃗ , V⃗ )

∂S⃗
+

∂F⃗ (S⃗ , V⃗ )

∂V⃗
· ∂V⃗
∂S⃗

= 0

Solve the above linear
system of ∂V⃗ /∂S⃗ to backprop
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Other
ingredients
in
SATNet

Low-rank regularization on S

- Doubly-exponentially many possible Boolean functions!

- Low-rank ⇒ Regularize the complexity through number of clauses

Auxiliary variable (hidden nodes)

- Only SDP with diagonal constraints, limiting representation

- Adding auxiliary variable (gadget) increases representation power
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Illustration: Learning
Parity
from
single
bit
supervision

- Parity problem is surprisingly hard for most deep networks to learn
[Shalev-Swartz et al., 2017]

- Chained (recurrent) SATNet-based network learns parity function for
up to length 40 strings from 10K examples
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SATNet LSTM
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Illustration: Learning
Sudoku

- Learning 9x9 Sudoku from 9K examples
- Single SATNet layer on

one-hot-encoded input puzzles
- Free parameters are S matrix of clauses,

randomly initialized

Model Train Test

ConvNet 72.6% 0.04%
SATNet
(ours) 99.8% 98.3%

Original Sudoku.

Model Train Test

ConvNet 0% 0%
SATNet
(ours) 99.7% 98.3%

Permuted Sudoku.
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Illustration: MNIST Sudoku

Model Train Test

ConvNet 0.31% 0%
SATNet
(ours) 93.6% 63.2%

- Getting example “correct” requires
correct Sudoku solution and predicting
all MNIST test digits correctly

- 85% accuracy on correct ConvNet input
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Code
and
Colab
Code available at https://github.com/locuslab/SATNet
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Conclusion
We presented

- SATNet, the first differentiable
MAXSAT solver as a layer

- can be integrated into the loop of deep learning systems
whenever neurons have logical constraints, and it learns
both
constraints
and
solutions solely from examples

Possible extensions:
- Incorporating known rules into the system

- Exploiting structures of the clause matrix

Poster at Pacific Ballroom #26
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