SATNet : Bridging deep learning and logical reasoning
using a differentiable satisfiability solver
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Summary Fast solution to MAXSAT SDP approximation Other ingredients in SATNet

Logical reasoning within DL architectures has been a major goal of modern Efficiently solve via low-rank factorization (Burer-Monteiro method):
Al. We provide a layer that enables end-to-end learning of the structure and X =VIV, V e R¥™" |y = 1. Block coordinate descent updates:
solutions of logic problems within deep networks.
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Low-rank regularization on .S

- Doubly-exponentially many possible Boolean functions !

AT Solver v; = —normalize(V S s; — ||si||*v;). - Low-rank = Regularize the complexity through number of clauses

Auxiliary variable (hidden nodes)

Derivation of the update - Only SDP with diagonal constraints, limiting representation
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P(cellz .4 = 5) The low-rank optimization problem is - Adding auxiliary variable (gadget) increases representation power
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Lo T T B :
y minimizey (575, VIV), st vl =1, Vi Inside SATNet: the forward pass
1

Constraints Focusing on the subproblem w.r.t. a specific v;:

The forward pass is responsible for relaxing/rounding the probability

BOSCH

Code available at:

github.com/locuslab/SATNet

Illustration: Learning Parity from data

Parity function is hard for deep networks to learn [Shalev-Swartz et al., 2017].
For a sequence of length 40 with single-bit supervision only from the end, the

recurrently chained SAT Net-based network can learn the parity function easily
form 10k examples while LSTM will stuck.
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Sudoku Image: "12 Jan 2006" by SudoFlickr is licensed under CC BY-SA 2.0 g . ININIMIZE U; gz UZ? St HUZH — 17 1npUtS/OU_tputS aﬂd SOlVlng the low_rank MAXSAT SDP Illustrationo Learning Sudoku from data
This work is about ... v where g; = V.S*s; — ||s]|?v; is a constant. procedure FORWARD (Z7)
A layer that enables end-to-end learning of both the constraints and so- Closed-form solution v; = —normalize(g;). L: compute V7 from Z7 via v, = — cos(mz,)vt +sin(mz,) (I, — vrod)v™d  Instead of simply solving the sudoku (which is easy), the SATNet can learn both
lutions of logic problems within deep networks... Theoretical analysis 9. compute V) from V7 via block coordinate descent the constraints and solution of Sudoku solely from unsolved and solved puzzles
A smoothed differentiable (maximum) satisfiability solver that can - For k > +/2n, the non-convex iterates are guaranteed 3: compute Zp from Vp via P(7,) = cos™(—v.vT)/m w1th01;t a?gh Sg:r;&utr-e ;Efoi'matlorz fl”ogn OnﬁY}?K exaglplis- | Hte.fel;. t]f(lf
be integrated into the loop of deep learning systems. to converge to global optima of SDP [Wang et al., 2018; Erdogdu et al., 2018 - - - - PALAIELEL UL LAC cb 15 THE Callst THAHR w0, WILELLS TALUOIHLY AR 26,
This work is not about - Com leiit riduced E"om O(n’lo '_o l)gof inte;ior ;)int mgethods | | Hhe core part s a blockdng coordinate descent method, which performs Lhe 5ATNet achieves almost perfect accuracy in both training and testing set.
. p1.5 y | S 108 106 p | v; = —normalize(V.STs; — |si[v;), fori=1...n. Note that we are reported that (after code release) the performance of ConvNet
Not about learning to find SAT solutions |Selsam et al. 2019 to O(n"mlog ) of our coordinate descent method, where m is Fclauses might increase given 1M data and more epochs.
-but about learning both constraints and solution from examples Global Convergence proof Illustration By maintaining = V'.S*, complexity of CD reduces from O(n’) to O(n'm). 53 7 5/3[4]6]7[8[9]1]2 l
_opti it ' M Train T
-we have another paper at AAAI comparing to the state-of-the-art MAXSAT We proved all the non-optimal critical points Inside SATNet: the backward pass © AR 11915 : f ; ; __1,) 3 g g 2 3 ode ain_ Test
solvers when the rules are given \/ are unstable because their Jacobian admits a | . - NGOG EIE ConvNet 72.6% 0.04%
| | | spectral radius greater than 1. Then, the stable The backward , e of o the ont Tent and 4 8| |3 1//4]2/6]8(5/3|7]9]1 ConvNetMask  91.4% 15.1%
ot ot s DL SAT s g s o s o oy sl T bt sl ot o ot e g et w3 0 s g LB SEEE AT fours) 03 08.3%
- doing so requires prior knowledge on the structure and constraints random initialization, the method has zero g p p q - s A e et Ts Original Sudoku
-further, current SAT solvers cannot accept probability inputs /‘\ possibility converging to non-opts, thus almost procedure BACKWARD (9//92,) 8 719/13/4]5]|2[8]6]1]7]9
MAXSAT Probl N surely converges to the global optimum. 1 compute 9/av, from gf — ( gf ) mm1<m U, Model T
I'O em mage modiied Irom rodsnulnox, - . (0] 0 0
2: compute U from 9¢/sv,, via block coordinate descent Shall we permute the Sudoku problem ConvNet 0% 0%
MAXSAT is the optimization variant of SAT solving Differentiate through the optimization problem . compute 9oz, — 0. ( ng (S0co 5T 5, to remove all the structure information ConvNetMask  0.01% 0%
| | ,, L N anql locality, SAT Net §t111 learns the SATNet (ours) 99.7% 98.3%
MAXE?%: Fmd.feg&b;eé vif s.t£.v§ /};1(2}11\/ —vy) A (U2 V —w3) 1 compute /o5 = — ( S o Uy Sg) vV — (SVTU logic, but ConvNet fails completely. Permuted Sudoku
: maximize F of satisfiable clauses
SDP relaxation SR . . . -
Relax the binary variables to smooth & continuous spheres (weight S) The core part is still a block coordinate method, solving the linear system from Illustration: MINIST Sudoku

the implicit function differentiation:

equiv

V; € {—|-1, —1} >
Semidefinite relaxation (Goemans-Williamson, 1995), X = VIV

[, We also form a MNIST version of Sudoku to test the end-to-end learning ability.
U = — ( L ) (US"s; — ||si||u; — 01/0v;), fori=1...n To do so, we first apply the ConvNet to each digits, feeding the output to a
il SATNet layer, connecting it to a loss, and train them in an end-to-end fashion.

vil =1, v; € RV 2% ||| = 1, v; € R

Back propagation
through the

o T | . . | . .o _ T . : : 15 | il = IS :
minimize (S5, X), st. X =0, diag(X) =1 optimization proc By maintaining ¥ = US", complexity of CD is again O(n “m) sje =11 2710 g : 0+ e Bal
o e . o Bl0ojobYop
where s;; € {—1,0,+1} denotes sign of ithe variable in jth clause. | | | | Similarity to Boltzmann machine 0S0l0§ 8720 1
When converged, the block coordinate descent satisfies the fixed-point equation b 4 g =3 O 5 E a' ~ — - ———~ SATNet —Loss
SATNet: MAXSAT SDP as a layer . . SATNet can be consider as an SOS(2) approximation of Boltzmann machine 0o03cn 701 o
T 2 |
v; = —normalize(V.5" s; — [|s]|"v;), Vi | L | 70[00 0N 02 - .
Both tries to minimizing the energy ©50[000|a ¢ ¢
I':‘rob BElaXEd Relaxed Prob The fixed point equation of the block coordinate descent provides an im- o . R, Model T Cett o o |
1Nputs 1nputs Y TANNPN PRVSFICINNY Outputs — outputs plicit function definition of the solution [Amos et al. 2017] - ;wijij’ WHELE Wij = 75 9 T CLULE GRAPIe - COTTECL - TEUITES -
2, €[0,1] mp v, ERF mpr (weight S ) = 1, CRF = 2,€(0, 1] J ClonvNet 0.31% 0% correct Sudoku solution and predicting
YieT We1g Yoe O Fi(S,V(S)) = v; + normalize(V S s; — ||si]|?vi) = 0, Vi Boltzmann minimize by sampling (simulated ConvNetMask  89% 0.1%  all MNIST test digits correctly
. . . o li in the di - 1. —1 ATNet , .2 - 85% accuracy on correct ConvNet input
Rel Optimi R J Thus, can apply implicit function theorem on the total derivatives annealing) in ¢ e, d.lscrete Spacg Vi 6 L, ,}’ S et (ours) 93.6% 63.2% - s P
e aX p lml Z e 0 u n bUt SATNet Optlmlze by felaXlIlg blnary Varlables to a [1] B. Amos and J. Z. Kolter. OptNet: Differentiable optimization as a layer in neural networks. In Proceedings of the 34th International Conference on Machine
aﬁ(§7 V(S)) aﬁ(§7 ‘7) aﬁ(§) ‘7) 8‘7 Smoother hlgher_dlmenSIOn Sphere lﬂ Rk Learning, volume 70 of Proceedings of Machine Learning Research, pages 136-145. PMLR, 2017.
PrOb * : : *PrOb 8§ p— O — ag | 8‘7 . ag) — O That lS) the lntel”nal Optlmlzathn Of SATNet lS eaSler) 2] I(\)/If.t;(é j?}\??ji\2-7\3)1[)42?6;/:\/1”1“13;?1)2-5YIn;gg;\_/ed approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal
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Solve the above linear system of A% / 95 to backprop


github.com/locuslab/SATNet

