
SATNet : Bridging deep learning and logical reasoning
using a differentiable satisfiability solver

Po-Wei Wang 1 Priya L. Donti 1 Bryan Wilder 2 J. Zico Kolter 1,3

1School of Computer Science, Carnegie Mellon University 2School of Engineering and Applied Sciences, Harvard University 3Bosch Center for AI
Code available at:
github.com/locuslab/SATNet

Summary

Logical reasoning within DL architectures has been a major goal of modern
AI. We provide a layer that enables end-to-end learning of the structure and
solutions of logic problems within deep networks.

Sudoku Image: "12 Jan 2006" by SudoFlickr is licensed under CC BY-SA 2.0

This work is about . . .

A layer that enables end-to-end learning of both the constraints and so-
lutions of logic problems within deep networks...
A smoothed differentiable (maximum) satisfiability solver that can
be integrated into the loop of deep learning systems.

This work is not about . . .

Not about learning to find SAT solutions [Selsam et al. 2019]
- but about learning both constraints and solution from examples
- we have another paper at AAAI comparing to the state-of-the-art MAXSAT
solvers when the rules are given

Not about using DL and SAT in a multi-staged manner
- doing so requires prior knowledge on the structure and constraints
- further, current SAT solvers cannot accept probability inputs

MAXSAT Problem

MAXSAT is the optimization variant of SAT solving

SAT: Find feasible vi s.t. v2 ∧ (v1 ∨ ¬v2) ∧ (v2 ∨ ¬v3)
MAXSAT: maximize # of satisfiable clauses

Relax the binary variables to smooth & continuous spheres

vi ∈ {+1, −1} equiv−−−→ |vi| = 1, vi ∈ R1 relax−−−→ ∥vi∥ = 1, vi ∈ Rk

Semidefinite relaxation (Goemans-Williamson, 1995), X = V TV

minimize ⟨STS, X⟩, s.t. X ⪰ 0, diag(X) = 1

where sij ∈ {−1, 0, +1} denotes sign of ithe variable in jth clause.

SATNet: MAXSAT SDP as a layer

Fast solution to MAXSAT SDP approximation

Efficiently solve via low-rank factorization (Burer-Monteiro method):
X = V TV , V ∈ Rk×n, ∥vi∥ = 1. Block coordinate descent updates:

vi = −normalize(V STsi − ∥si∥2vi).

Derivation of the update

The low-rank optimization problem is

minimize V ⟨STS, V TV ⟩, s.t. ∥vi∥ = 1, ∀i

Focusing on the subproblem w.r.t. a specific vi:

minimize vi
gT

i vi, s.t. ∥vi∥ = 1,

where gi = V STsi − ∥si∥2vi is a constant.
Closed-form solution vi = −normalize(gi).

Theoretical analysis
- For k >

√
2n, the non-convex iterates are guaranteed

to converge to global optima of SDP [Wang et al., 2018; Erdogdu et al., 2018]
- Complexity reduced from O(n6 log log 1

ϵ) of interior point methods
to O(n1.5m log 1

ϵ) of our coordinate descent method, where m is #clauses.
Global Convergence proof Illustration

We proved all the non-optimal critical points
are unstable because their Jacobian admits a
spectral radius greater than 1. Then, the stable
manifold theorem in control theory implies after
random initialization, the method has zero
possibility converging to non-opts, thus almost
surely converges to the global optimum.

Image modified from Podshumok, CC BY-SA 3.0

Differentiate through the optimization problem

When converged, the block coordinate descent satisfies the fixed-point equation

vi = −normalize(V STsi − ∥si∥2vi), ∀i

The fixed point equation of the block coordinate descent provides an im-
plicit function definition of the solution [Amos et al. 2017]

Fi(S, V (S)) = vi + normalize(V STsi − ∥si∥2vi) = 0, ∀i

Thus, can apply implicit function theorem on the total derivatives

∂F⃗ (S⃗, V⃗ (S))
∂S⃗

= 0 =⇒ ∂F⃗ (S⃗, V⃗)
∂S⃗

+ ∂F⃗ (S⃗, V⃗)
∂V⃗

· ∂V⃗

∂S⃗
= 0

Solve the above linear system of ∂V⃗ /∂S⃗ to backprop

Other ingredients in SATNet

Low-rank regularization on S

- Doubly-exponentially many possible Boolean functions !
- Low-rank ⇒ Regularize the complexity through number of clauses

Auxiliary variable (hidden nodes)
- Only SDP with diagonal constraints, limiting representation
- Adding auxiliary variable (gadget) increases representation power

Inside SATNet: the forward pass

The forward pass is responsible for relaxing/rounding the probability
inputs/outputs and solving the low-rank MAXSAT SDP.

procedure FORWARD (ZI)
1: compute VI from ZI via vι = − cos(πzι)v⊤ + sin(πzι)(Ik − v⊤vT

⊤)vrand
ι

2: compute VO from VI via block coordinate descent
3: compute ZO from VO via P (ṽo) = cos−1(−vT

o v⊤)/π

The core part is a blocking coordinate descent method, which performs

vi = −normalize(V STsi − ∥si∥2vi), for i = 1 . . . n.

By maintaining Ω = V ST , complexity of CD reduces from O(n3) to O(n1.5m).

Inside SATNet: the backward pass

The backward pass is responsible of converting the inputting gradient and
solving the implicit function derivatives of the fixed-point equation.

procedure BACKWARD (∂ℓ/∂ZO)
1: compute ∂ℓ/∂VO from ∂ℓ

∂vo
=
(

∂ℓ
∂zo

)
1

π sin(πzo)v⊤,
2: compute U from ∂ℓ/∂VO via block coordinate descent

3: compute ∂ℓ/∂ZI = ∂ℓ
∂z⋆

ι
−
(

∂vι

∂zι

)T (∑
o∈O uos

T
o

)
sι

4: compute ∂ℓ/∂S = −
(∑

o∈O uos
T
o

)T

V − (SV T)U

The core part is still a block coordinate method, solving the linear system from
the implicit function differentiation:

ui = −
I − viv

T
i

∥gi∥

 (USTsi − ∥si∥2ui − ∂l/∂vi), for i = 1 . . . n.

By maintaining Ψ = UST , complexity of CD is again O(n1.5m).

Similarity to Boltzmann machine

SATNet can be consider as an SOS(2) approximation of Boltzmann machine
Both tries to minimizing the energy

E = −
∑
ij

wijvivj, where wij = −sT
i sj

Boltzmann minimize by sampling (simulated
annealing) in the discrete space vi ∈ {+1, −1},
but SATNet optimize by relaxing binary variables to a
smoother higher-dimension sphere in Rk.
That is, the internal optimization of SATNet is easier,
thus much faster than Boltzmann machine.

Illustration: Learning Parity from data

Parity function is hard for deep networks to learn [Shalev-Swartz et al., 2017].
For a sequence of length 40 with single-bit supervision only from the end, the
recurrently chained SATNet-based network can learn the parity function easily
form 10k examples while LSTM will stuck.

0 20 40 60 80 100

Epoch

0.0

0.2

0.4

E
rr

or
(L

=
40

)

SATNet LSTM

Illustration: Learning Sudoku from data

Instead of simply solving the sudoku (which is easy), the SATNet can learn both
the constraints and solution of Sudoku solely from unsolved and solved puzzles
without any structure information from only 9K examples. Here, the
parameter of the SATNet is the clause matrix S, which is randomly initialized.
The SATNet achieves almost perfect accuracy in both training and testing set.
Note that we are reported that (after code release) the performance of ConvNet
might increase given 1M data and more epochs.

Model Train Test
ConvNet 72.6% 0.04%

ConvNetMask 91.4% 15.1%
SATNet (ours) 99.8% 98.3%

Original Sudoku

Shall we permute the Sudoku problem
to remove all the structure information
and locality, SATNet still learns the
logic, but ConvNet fails completely.

Model Train Test
ConvNet 0% 0%

ConvNetMask 0.01% 0%
SATNet (ours) 99.7% 98.3%

Permuted Sudoku

Illustration: MNIST Sudoku

We also form a MNIST version of Sudoku to test the end-to-end learning ability.
To do so, we first apply the ConvNet to each digits, feeding the output to a
SATNet layer, connecting it to a loss, and train them in an end-to-end fashion.

Model Train Test
ConvNet 0.31% 0%

ConvNetMask 89% 0.1%
SATNet (ours) 93.6% 63.2%

- Getting example “correct” requires
correct Sudoku solution and predicting
all MNIST test digits correctly

- 85% accuracy on correct ConvNet input

[1] B. Amos and J. Z. Kolter. OptNet: Differentiable optimization as a layer in neural networks. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages 136–145. PMLR, 2017.

[2] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM (JACM), 42(6):1115–1145, 1995.

[3] M. Shub. Global stability of dynamical systems. Springer Science & Business Media, 2013.

1

github.com/locuslab/SATNet

