
Low-rank
semidefinite
programming
for
the
MAX2SAT problem

Po-Wei Wang J. Zico Kolter

Machine Learning Department School of Computer Science,
Carnegie Mellon University Carnegie Mellon University, and

Bosch Center for Artificial Intelligence

1

Highlights

We will talk about
- Why maximum satisfiability problem matters

- How to approximate the MAXSAT problem with semidefinite program

- How to solve the above approximation efficiently

- How to use
the
approximation in a combinatorial search procedure

In conclusion, you will find
- The first continuous
solver
for
MAXSAT

that beats all the state-of-the-art solvers in some subclasses

- A new avenue for combinatorial optimization problems

2

Outline

Maximum satisfiability

Lifting and Goemans-Williamson approximation

SDP solvers and the Mixing method

Branch-and-bound for low-rank SDP

Experimental results

Reasoning with conflicts

Given a knowledge graph with imperfect facts and rules:
- Facts:

▶ Spain_Nbr_Portugal, Spain_Nbr_Morocco, Spain_Nbr_France

▶ Portugal_In_Eu, France_In_Eu, Morocco_In_Af

- Rules:
▶ A country locates in only one region

▶ Neighbors tends to in the same region

Say that we want to infer whether S_In_Eu or S_In_Af ..

The problem can be translates to a boolean formula

(¬S_In_Eu∨¬S_In_Af)∧(S_Nbr_M∧M _In_Af ⇒ S_In_Af) . . .

Thus, reasoning corresponds to find a model with the least conflicts
- I.e., solving the corresponding MAXSAT problem

3

MAXSAT = Maximizing the # of satisfiable clauses

Given a Boolean
formula, where variables vi ∈ {True, False}

(¬v1) ∧ (v1 ∨ ¬v2)︸ ︷︷ ︸
Clause

∧ (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ ¬v3),

The SAT problem finds a satisfiable V ∈ {T ,F}n if exists.

But in ML, inputs are noisy and models are not perfect
usually cannot find a model that’s 100% correct

MAXSAT: maximize the number of satisfiable clauses.
That is, find a model with the least error

4

Difficulties: MAXSAT is NP-complete

MAXSAT is a binary optimization problem, hard to solve in general.

Modern discrete solvers apply different heuristics:
- Some bound the solution using SAT solvers (core-guided methods)

- Some perform greedy local
search (e.g., CCLS, CCEHC)

There are some continuous
approximations in theoretical computer
science, but doesn’t outperform discrete solvers in general

- Underlying optimization problems are expensive comparing to heuristics

We will show an efficient
approximation that is easy to compute

5

Outline

Maximum satisfiability

Lifting and Goemans-Williamson approximation

SDP solvers and the Mixing method

Branch-and-bound for low-rank SDP

Experimental results

Relaxation: Lifting binary variables to higher dimensions
The binary optimization problem can be in general written as

minimize
V

L(V), s.t. vi ∈ {−1,+1}, L(·) = Loss func

The binary constraint vi ∈ {−1,+1} are equivalent to the following

|vi | = 1, vi ∈ R1.

To make it smoother, we can lift it to
a
higher
dimension
space

∥vi∥ = 1, vi ∈ Rk .

That is, relaxing the binary variables to a continuous unit sphere

+1-1

This lifting from binary variable to the unit sphere is called
Goemans-Williamson
approximation. 6

The quadratic approximation for MAX-2-SAT
Consider the simplest MAXSAT: the MAX-2-SAT (clause len ≤ 2)

Maximizing the satisfiability is equivalent to minimizing the loss

maximize
V

∑ merit︷ ︸︸ ︷
(v1 ∨ v2) ≡ minimize

V

∑ loss︷ ︸︸ ︷
(¬v1 ∧ ¬v2)

We can cleverly design the loss as

loss(V) =
∥v1 + v2 − 1∥2 − 1

8

Verify: loss when all literals=false
- v1 = −1, v2 = −1 :

loss(V) = (9− 1)/8 = 1

- v1 = +1, v2 = ±1 :
loss(V) = (1− 1)/8 = 0

loss

2F 1F+1T 2T

1

-1 0-3 1

unsatisfied

satisfied

Replace the 1 with v0 as the new “truth” direction.
Extendable to general clause with length nj (quadratic lower bound) 7

Randomize rounding: from continuous to discrete
After obtaining the optimal vi , we can recover the discrete assignment:
Randomized
rounding: pick a uniform random direction r

binary vi = sign(rT v0 · rT vi), ∀i = 1 · · ·n.

Goemans & Williamson (1995) proved 0.878 approximation ratio on
MAX2SAT in expectation.
Perform multiple times gives surprisingly high approximation rate. 8

Approximation ratio experiment
– Guaranteed 0.878 approximation:

E(Rounding) ≥ 0.878 · OPT

– Experiment: 0.978 approximation rate in 2016 MAXSAT dataset.

Key idea: E(Rounding) ⇒ sup
r∼i.i.d.

E(r-th Rounding)

9

Outline

Maximum satisfiability

Lifting and Goemans-Williamson approximation

SDP solvers and the Mixing method

Branch-and-bound for low-rank SDP

Experimental results

Reducing vector program to semidefinite program

Recall that the loss is a homogeneous quadratic function to V

loss(V) =
∥v1 + v2 − v0∥2 − 1

8
.

Thus, the problem is equivalent to the quadratic vector
program

minimize
V

⟨C ,V TV ⟩, s.t. ∥vi∥ = 1,V ∈ Rk×n

When lifting the solution to a high enough dimension (k ≥
√
2n), the

optimal solution in V is equivalent to the following SDP (Pataki, 1998)

minimize
X

⟨C ,X ⟩, s.t. Xii = 1,X ⪰ 0 ∈ Rn×n .

Hence the optimal solution X = V TV in polynomial time.

10

Biggest problem: SDP solvers are slow

Since SDP is convex, we can solve it in polynomial time. That said,
the complexity for SDP solvers (interior point methods) is O(n6).

- Only scales to n ≈ 103

- Complexity cubic to # of variables (X ∈ Rn×n) from matrix inversion

We’d like to solve the problem in the low-rank space V ∈ Rk×n?
- Many fewer variables

- But non-convex (unit sphere shell)

Fortunately, we have a secret weapon that provably recover the
optimal solution of SDP in the low-rank space.

- Recover the global optimal solution despite the non-convexity

- At the same time 10 ∼ 100x faster than other state-of-the-art solvers

11

Secret weapon: the Mixing method for diagonal SDP

For the optimization problem on unit sphere,

minimize
V

⟨C ,V TV ⟩, s.t. ∥vi∥ = 1,V ∈ Rk×n .

Observe the objective can be decomposed as

⟨C ,V TV ⟩ =
∑
i

vTi (
∑
j

cij vj)

If we solve one vector vi at a time and fix the others, the sub-problem
has a closed-form solution

vi := normalize

−
∑
j ̸=i

cij vj

 .

Thus, we can cyclically
update
all
the
vectors for i = 1 . . .n .
- Scales to ten millions of variables, 10 ∼ 100x faster than SOTA

- Provably convergent to global optimum of corresponding SDP!
12

No convergence proof before for low-rank SDP solvers

Low-rank decomposition first discovered by Burer and Monteiro (2001)

minimize
V

⟨C ,V TV ⟩, s.t. ∥vi∥ = 1,V ∈ Rk×n .

Many working variants, non provably convergent to optimal objective
- Boumal et al. (2018): H ⪰ −γI in O(1/γ3), bound f − f ∗ for k > n

- Bhojanapalli et al. (2018): fµ − f ∗µ → 0 (fµ is extended Lagrangian)

Difficulties
- Non-convex (spherical manifold dom), rotational equivalence.

- Random initialization required.

- Singularity of Jacobian and Hessian.

13

Main theoretical result

How do we prove it?
- Lyapunov instability in control theory and similarity to Gauss-Seidel

Results:
- First proof of convergence to global optima in 17 years.

- Asymptotic m
√
n log 1

ϵ v.s. O(n6), where m is the # of literals

- Further, it is practically 10 ∼ 100x faster than other low-rank method.

14

Proof sketch: Lyapunov instability and stable manifolds

Consider one step of the Mixing method V next := M (V) as operator
Instability: the operator has expansive direction ∀ non-opt criticals.

- Eigenvalues of Jacobian on manifold contain those in Euclidean

Eigvals(A⊗ Ik diag(I − viv
T
i)B ⊗ Ik) ⊇ Eigvals(AB) for k >

√
2n.

- Jacobian of Gauss-Seidel is unstable when not PSD (|λi | > 1).

- All non-optimal criticals corresponds to a G.-S. on non-PSD system.

- Thus, the Mixing methods are unstable on non-optimal criticals.

Center-stable manifold thm: Existence of invariant
manifolds.
- Mixing method with step-size is a diffeomorphism (1-to-1 and C1).

- Apply center-stable manifold thm: basin to unstable is 0 measure.

- That is, random initialization never converges to unstable criticals.

- Converge to critical and never to unstable ⇒ converge to global opt.
15

Outline

Maximum satisfiability

Lifting and Goemans-Williamson approximation

SDP solvers and the Mixing method

Branch-and-bound for low-rank SDP

Experimental results

Branch-and-bound framework for SDP

Despite good approximation, need tree-search for discrete optimality

Branch-and-bound. Goal: find the BEST=minimum UNSAT solution.
- Initialize a priority queue Q = the unassigned MAXSAT problem

- While Q is not empty:
– N = Q .pop()

– Update BEST base on N if possible.

– Evaluate heuristic lower bound f (N) ≤ UNSAT(N)

– If BEST ≤ f (N): Prune.

– Else: pick a variable vi , Q .push(N | vi = T and N | vi = F).

Since the loss is a quadratic lower bound for the discrete loss,
SDPs is a lower bound in the branch-and-bound framework

Solve SDP for every internal node...

16

Bounding SDP by initialization

Fortunately, don’t need to solve SDPs for every internal node!
- Observation: Child problems will be similar to the parent problem

- Can apply the primal
and
dual
initialization to bound the SDP values
and only solve SDPs for the unpredictable cases

By the SDP duality, we have the following primal-dual
pairs

minimize
V∈Rk×n

f (V) := ⟨C ,V TV ⟩, s.t. ∥vi∥2 = 1.

maximize
λ∈Rn

D(λ) := −1Tλ, s.t. C +Dλ ⪰ 0.

Known fact: f (V) ≥ f ∗ ≥ D(λ) and BEST ≥ UNSAT ≥ ⌈f ∗⌉.
For any feasible primal dual solution V and λ,

- f (V) ≤ BEST ⇒ Expand (not prunable by SDP)

- ⌈D(λ)⌉ ≥ BEST ⇒ Prune (not contain optimal solution)
17

Primal and dual initialization
Primal initialization

- Trivially copy parent solution and evaluate

- Help expansion

Dual initialization
- Exploit the difference in C , which exhibits an arrow-head structure

- Calculate a feasible λ satisfying C +Dλ ⪰ 0

- Help pruning

primal init:

expand

dual init:

prune

uncertain:

new root

SDP root

Greatly reduce the SDP subproblems that really need to tackle 18

Different priority queue for different tasks

There are 2 tracks in MAXSAT evaluation with different requirements

The complete track:
- Output the result after verification

- Thus, we set priority queue Q as stack

- Equivalent to performing depth-first search at the tree

The incomplete track:
- Output the best result as you get it, no verification

- Thus, we set priority queue Q as a heap

- Equivalent to best-first search at the tree

Same algorithm for the two tracks!

19

Outline

Maximum satisfiability

Lifting and Goemans-Williamson approximation

SDP solvers and the Mixing method

Branch-and-bound for low-rank SDP

Experimental results

Experiment setup

For fairness, we replicate the setup of the 2016 MAXSAT evaluation
- the same CPU (Intel Xeon E5-2620)

- single core mode

- 3.5 GB memory limit.

- 30 min time limit for complete track, 5 min for incomplete track

We compare our results to the best solvers for each problem instances
- That is, the virtual best solvers

20

Complete track
For the complete random categories, we solved 169/228 MAX2SAT
instances in avg 273s, while the best solvers solve 145/228 in 341s.
Consistently outperform the VBS!

0 20 40 60 80 100 120 140 160 180
instances

100

101

102

103

104

se
co

n
d
s

MAX2SAT in the complete track

MIXSAT

Best complete 2016

21

Incomplete track
For the incomplete random categories, we solved all the instances in
0.22 sec (best solution), while the 2016 best solvers takes 1.92s
A 8.72x speedup!

0 50 100 150 200 250
instances

10-3

10-2

10-1

100

101

se
co

n
d
s

MAX2SAT in the incomplete track

MIXSAT

Best incomplete 2016

22

MAX3SAT
For all the MAX3SAT instances in the incomplete random track, we
solved all except 2 of the instance, and is faster than 2016 best solvers
in 114/144 instances.

0 20 40 60 80 100 120 140 160
instances

10-3

10-2

10-1

100

101

102

se
co

n
d
s

MAX3SAT in the incomplete track

MIXSAT

Best incomplete 2016

23

Summary

In this talk, we
- Presented the first continuous
MAXSAT solver that

outperforms the state-of-the-art discrete solvers in some subclasses

- Developed a lifting approximation and solve it via a low-rank SDP
method (Mixing) that provably converges to the optimal

- Recovered the discrete optimal solution via developing the primal-dual
initialization in a branch-and-bound framework

And we showed that
- The solver is many times faster than the best solvers in 2016 in some

MAX2SAT categories.

- Also promising in MAX3SAT, but certainly not the best yet.

- It opens a new avenue for combinatorial optimization,
taking the SDP out of the theoretical world!

24

Appendix: The MIXSAT algorithm

Initialize a priority queue Q = {initial problem};
while Q is not empty do

New SDP root P = Q .pop();
Solve f ∗ := SDP(P) with the Mixing method;
if ⌈f ∗ − ϵ⌉ ≥ BEST then continue;
Update BEST and resolution orders by randomized rounding on
V := arg SDP(P);
foreach subproblems of P do

Initialize PRIMAL and DUAL objective values;
if PRIMAL ≤ BEST then Expand;
else
if ⌈DUAL⌉ ≥ BEST then Prune;
else Push the subproblem into the Q ;

end
end

25

Appendix: Crafted MAXCUT instances

0 20 40 60 80 100 120
instances

10-4

10-3

10-2

10-1

100

101

se
co

n
d
s

Crafted MAXCUT in 2016/2018 incomplete track

MIXSAT

Best incomplete 2016 / 2018

For all the MAXCUT instances in the incomplete crafted track in
2016/2018, we solved all the instances in 0.62s, while the 2016/2018
best solvers takes 1.84s.
Still 3x speedup.

26

	Maximum satisfiability
	Lifting and Goemans-Williamson approximation
	SDP solvers and the Mixing method
	Branch-and-bound for low-rank SDP
	Experimental results

