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Highlights

We will talk about
- Why maximum satisfiability problem matters

- How to approximate the MAXSAT problem with semidefinite program

- How to solve the above approximation efficiently

- How to use
the
approximation in a combinatorial search procedure

In conclusion, you will find
- The first continuous
solver
for
MAXSAT

that beats all the state-of-the-art solvers in some subclasses

- A new avenue for combinatorial optimization problems
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Reasoning with conflicts

Given a knowledge graph with imperfect facts and rules:
- Facts:

▶ Spain_Nbr_Portugal, Spain_Nbr_Morocco, Spain_Nbr_France

▶ Portugal_In_Eu, France_In_Eu, Morocco_In_Af

- Rules:
▶ A country locates in only one region

▶ Neighbors tends to in the same region

Say that we want to infer whether S_In_Eu or S_In_Af ..

The problem can be translates to a boolean formula

(¬S_In_Eu∨¬S_In_Af )∧(S_Nbr_M∧M _In_Af ⇒ S_In_Af ) . . .

Thus, reasoning corresponds to find a model with the least conflicts
- I.e., solving the corresponding MAXSAT problem
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MAXSAT = Maximizing the # of satisfiable clauses

Given a Boolean
formula, where variables vi ∈ {True, False}

(¬v1) ∧ (v1 ∨ ¬v2)︸ ︷︷ ︸
Clause

∧ (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ ¬v3),

The SAT problem finds a satisfiable V ∈ {T ,F}n if exists.

But in ML, inputs are noisy and models are not perfect
usually cannot find a model that’s 100% correct

MAXSAT: maximize the number of satisfiable clauses.
That is, find a model with the least error
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Difficulties: MAXSAT is NP-complete

MAXSAT is a binary optimization problem, hard to solve in general.

Modern discrete solvers apply different heuristics:
- Some bound the solution using SAT solvers (core-guided methods)

- Some perform greedy local
search (e.g., CCLS, CCEHC)

There are some continuous
approximations in theoretical computer
science, but doesn’t outperform discrete solvers in general

- Underlying optimization problems are expensive comparing to heuristics

We will show an efficient
approximation that is easy to compute
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Relaxation: Lifting binary variables to higher dimensions
The binary optimization problem can be in general written as

minimize
V

L(V ), s.t. vi ∈ {−1,+1}, L(·) = Loss func

The binary constraint vi ∈ {−1,+1} are equivalent to the following

|vi | = 1, vi ∈ R1.

To make it smoother, we can lift it to
a
higher
dimension
space

∥vi∥ = 1, vi ∈ Rk .

That is, relaxing the binary variables to a continuous unit sphere

+1-1

This lifting from binary variable to the unit sphere is called
Goemans-Williamson
approximation. 6



The quadratic approximation for MAX-2-SAT
Consider the simplest MAXSAT: the MAX-2-SAT (clause len ≤ 2)

Maximizing the satisfiability is equivalent to minimizing the loss

maximize
V

∑ merit︷ ︸︸ ︷
(v1 ∨ v2) ≡ minimize

V

∑ loss︷ ︸︸ ︷
(¬v1 ∧ ¬v2)

We can cleverly design the loss as

loss(V ) =
∥v1 + v2 − 1∥2 − 1

8

Verify: loss when all literals=false
- v1 = −1, v2 = −1 :

loss(V ) = (9− 1)/8 = 1

- v1 = +1, v2 = ±1 :
loss(V ) = (1− 1)/8 = 0

loss

2F 1F+1T 2T

1

-1 0-3 1

unsatisfied

satisfied

Replace the 1 with v0 as the new “truth” direction.
Extendable to general clause with length nj (quadratic lower bound) 7



Randomize rounding: from continuous to discrete
After obtaining the optimal vi , we can recover the discrete assignment:
Randomized
rounding: pick a uniform random direction r

binary vi = sign(rT v0 · rT vi), ∀i = 1 · · ·n.

Goemans & Williamson (1995) proved 0.878 approximation ratio on
MAX2SAT in expectation.
Perform multiple times gives surprisingly high approximation rate. 8



Approximation ratio experiment
– Guaranteed 0.878 approximation:

E(Rounding) ≥ 0.878 · OPT

– Experiment: 0.978 approximation rate in 2016 MAXSAT dataset.

Key idea: E(Rounding) ⇒ sup
r∼i.i.d.

E(r-th Rounding)
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Reducing vector program to semidefinite program

Recall that the loss is a homogeneous quadratic function to V

loss(V ) =
∥v1 + v2 − v0∥2 − 1

8
.

Thus, the problem is equivalent to the quadratic vector
program

minimize
V

⟨C ,V TV ⟩, s.t. ∥vi∥ = 1,V ∈ Rk×n

When lifting the solution to a high enough dimension (k ≥
√
2n ), the

optimal solution in V is equivalent to the following SDP (Pataki, 1998)

minimize
X

⟨C ,X ⟩, s.t. Xii = 1,X ⪰ 0 ∈ Rn×n .

Hence the optimal solution X = V TV in polynomial time.
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Biggest problem: SDP solvers are slow

Since SDP is convex, we can solve it in polynomial time. That said,
the complexity for SDP solvers (interior point methods) is O(n6).

- Only scales to n ≈ 103

- Complexity cubic to # of variables (X ∈ Rn×n ) from matrix inversion

We’d like to solve the problem in the low-rank space V ∈ Rk×n?
- Many fewer variables

- But non-convex (unit sphere shell)

Fortunately, we have a secret weapon that provably recover the
optimal solution of SDP in the low-rank space.

- Recover the global optimal solution despite the non-convexity

- At the same time 10 ∼ 100x faster than other state-of-the-art solvers
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Secret weapon: the Mixing method for diagonal SDP

For the optimization problem on unit sphere,

minimize
V

⟨C ,V TV ⟩, s.t. ∥vi∥ = 1,V ∈ Rk×n .

Observe the objective can be decomposed as

⟨C ,V TV ⟩ =
∑
i

vTi (
∑
j

cij vj )

If we solve one vector vi at a time and fix the others, the sub-problem
has a closed-form solution

vi := normalize

−
∑
j ̸=i

cij vj

 .

Thus, we can cyclically
update
all
the
vectors for i = 1 . . .n .
- Scales to ten millions of variables, 10 ∼ 100x faster than SOTA

- Provably convergent to global optimum of corresponding SDP!
12



No convergence proof before for low-rank SDP solvers

Low-rank decomposition first discovered by Burer and Monteiro (2001)

minimize
V

⟨C ,V TV ⟩, s.t. ∥vi∥ = 1,V ∈ Rk×n .

Many working variants, non provably convergent to optimal objective
- Boumal et al. (2018): H ⪰ −γI in O(1/γ3), bound f − f ∗ for k > n

- Bhojanapalli et al. (2018): fµ − f ∗µ → 0 (fµ is extended Lagrangian)

Difficulties
- Non-convex (spherical manifold dom), rotational equivalence.

- Random initialization required.

- Singularity of Jacobian and Hessian.
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Main theoretical result

How do we prove it?
- Lyapunov instability in control theory and similarity to Gauss-Seidel

Results:
- First proof of convergence to global optima in 17 years.

- Asymptotic m
√
n log 1

ϵ v.s. O(n6), where m is the # of literals

- Further, it is practically 10 ∼ 100x faster than other low-rank method.
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Proof sketch: Lyapunov instability and stable manifolds

Consider one step of the Mixing method V next := M (V ) as operator
Instability: the operator has expansive direction ∀ non-opt criticals.

- Eigenvalues of Jacobian on manifold contain those in Euclidean

Eigvals(A⊗ Ik diag(I − viv
T
i )B ⊗ Ik ) ⊇ Eigvals(AB) for k >

√
2n.

- Jacobian of Gauss-Seidel is unstable when not PSD (|λi | > 1).

- All non-optimal criticals corresponds to a G.-S. on non-PSD system.

- Thus, the Mixing methods are unstable on non-optimal criticals.

Center-stable manifold thm: Existence of invariant
manifolds.
- Mixing method with step-size is a diffeomorphism (1-to-1 and C1).

- Apply center-stable manifold thm: basin to unstable is 0 measure.

- That is, random initialization never converges to unstable criticals.

- Converge to critical and never to unstable ⇒ converge to global opt.
15
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Branch-and-bound framework for SDP

Despite good approximation, need tree-search for discrete optimality

Branch-and-bound. Goal: find the BEST=minimum UNSAT solution.
- Initialize a priority queue Q = the unassigned MAXSAT problem

- While Q is not empty:
– N = Q .pop()

– Update BEST base on N if possible.

– Evaluate heuristic lower bound f (N ) ≤ UNSAT(N )

– If BEST ≤ f (N ): Prune.

– Else: pick a variable vi , Q .push( N | vi = T and N | vi = F ).

Since the loss is a quadratic lower bound for the discrete loss,
SDPs is a lower bound in the branch-and-bound framework

Solve SDP for every internal node...
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Bounding SDP by initialization

Fortunately, don’t need to solve SDPs for every internal node!
- Observation: Child problems will be similar to the parent problem

- Can apply the primal
and
dual
initialization to bound the SDP values
and only solve SDPs for the unpredictable cases

By the SDP duality, we have the following primal-dual
pairs

minimize
V∈Rk×n

f (V ) := ⟨C ,V TV ⟩, s.t. ∥vi∥2 = 1.

maximize
λ∈Rn

D(λ) := −1Tλ, s.t. C +Dλ ⪰ 0.

Known fact: f (V ) ≥ f ∗ ≥ D(λ) and BEST ≥ UNSAT ≥ ⌈f ∗⌉.
For any feasible primal dual solution V and λ,

- f (V ) ≤ BEST ⇒ Expand (not prunable by SDP)

- ⌈D(λ)⌉ ≥ BEST ⇒ Prune (not contain optimal solution)
17



Primal and dual initialization
Primal initialization

- Trivially copy parent solution and evaluate

- Help expansion

Dual initialization
- Exploit the difference in C , which exhibits an arrow-head structure

- Calculate a feasible λ satisfying C +Dλ ⪰ 0

- Help pruning

primal init:

expand

dual init: 

prune

uncertain: 

new  root

SDP root

Greatly reduce the SDP subproblems that really need to tackle 18



Different priority queue for different tasks

There are 2 tracks in MAXSAT evaluation with different requirements

The complete track:
- Output the result after verification

- Thus, we set priority queue Q as stack

- Equivalent to performing depth-first search at the tree

The incomplete track:
- Output the best result as you get it, no verification

- Thus, we set priority queue Q as a heap

- Equivalent to best-first search at the tree

Same algorithm for the two tracks!
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Experiment setup

For fairness, we replicate the setup of the 2016 MAXSAT evaluation
- the same CPU (Intel Xeon E5-2620)

- single core mode

- 3.5 GB memory limit.

- 30 min time limit for complete track, 5 min for incomplete track

We compare our results to the best solvers for each problem instances
- That is, the virtual best solvers
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Complete track
For the complete random categories, we solved 169/228 MAX2SAT
instances in avg 273s, while the best solvers solve 145/228 in 341s.
Consistently outperform the VBS!
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Best complete 2016
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Incomplete track
For the incomplete random categories, we solved all the instances in
0.22 sec (best solution), while the 2016 best solvers takes 1.92s
A 8.72x speedup!
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MAX3SAT
For all the MAX3SAT instances in the incomplete random track, we
solved all except 2 of the instance, and is faster than 2016 best solvers
in 114/144 instances.
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Summary

In this talk, we
- Presented the first continuous
MAXSAT solver that

outperforms the state-of-the-art discrete solvers in some subclasses

- Developed a lifting approximation and solve it via a low-rank SDP
method (Mixing) that provably converges to the optimal

- Recovered the discrete optimal solution via developing the primal-dual
initialization in a branch-and-bound framework

And we showed that
- The solver is many times faster than the best solvers in 2016 in some

MAX2SAT categories.

- Also promising in MAX3SAT, but certainly not the best yet.

- It opens a new avenue for combinatorial optimization,
taking the SDP out of the theoretical world!
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Appendix: The MIXSAT algorithm

Initialize a priority queue Q = {initial problem};
while Q is not empty do

New SDP root P = Q .pop();
Solve f ∗ := SDP(P) with the Mixing method;
if ⌈f ∗ − ϵ⌉ ≥ BEST then continue;
Update BEST and resolution orders by randomized rounding on
V := arg SDP(P);
foreach subproblems of P do

Initialize PRIMAL and DUAL objective values;
if PRIMAL ≤ BEST then Expand;
else
if ⌈DUAL⌉ ≥ BEST then Prune;
else Push the subproblem into the Q ;

end
end
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Appendix: Crafted MAXCUT instances

0 20 40 60 80 100 120
instances
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For all the MAXCUT instances in the incomplete crafted track in
2016/2018, we solved all the instances in 0.62s, while the 2016/2018
best solvers takes 1.84s.
Still 3x speedup.
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