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Abstract
Matrix factorization is a core technique in many machine
learning problems, yet also presents a nonconvex and often
difficult-to-optimize problem. In this paper we present an
approach based upon polynomial optimization techniques that
both improves the convergence time of matrix factorization
algorithms and helps them escape from local optima. Our
method is based on the realization that given a joint search
direction in a matrix factorization task, we can solve the “sub-
space search” problem (the task of jointly finding the steps
to take in each direction) by solving a bivariate quartic poly-
nomial optimization problem. We derive two methods for
solving this problem based upon sum of squares moment re-
laxations and the Durand-Kerner method, then apply these
techniques on matrix factorization to derive a direct coordi-
nate descent approach and a method for speeding up existing
approaches. On three benchmark datasets we show the method
substantially improves convergence speed over state-of-the-art
approaches, while also attaining lower objective value.

1 Introduction
Matrix factorization has become a foundational operation
in many machine learning tasks. Although there are several
variants of matrix factorization, one of the most common is
the collaborate filtering setting, where we wish to find a low-
rank reconstruction of some matrix S ∈ RM×N , where we
only observe the entries Sij at some relatively small number
of points (i, j) ∈ S. The goal is then to find some A ∈
RM×K and B ∈ RN×K such that

aTi bj ≈ Sij , ∀(i, j) ∈ S (1)

where ai denotes the ith row of A and bj denotes the jth row
of B. Although many methods to perform this factorization
are possible, a natural approach is to solve the optimization
problem

minimize
A,B

L(A,B), (2)

where

L(A,B) ≡
∑

(i,j)∈S

(aTi bj − Sij)2 + λ
(
‖A‖2F + ‖B‖2F

)
,

in which A and B are the optimization variables and λ is
a regularization parameter. This approach and extensions

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have been used in a number of collaborative filtering and
recommender system applications (Bell and Koren 2007;
Dror et al. 2012) and researchers have developed numerous
optimization approaches to solving these problems, discussed
in more detail below.

Despite it ubiquity, (2) is a non-convex optimization prob-
lem as it involves quartic terms in the A and B variables.
A number of approaches can still be used to optimize the
objective — two popular and straightforward approaches, for
example, are to use alternating minimization, since the objec-
tive is convex in either A or B separately, or simple gradient
descent in the non-convex objective — but the possibility of
local optima is real and a non-trivial reality of matrix factor-
ization methods. A low-dimension example of (2) is given
in Appendix B, in which both methods stuck if not properly
initialized.

In this paper we propose an approach that both helps to
mitigate the possibility of local optima and speeds up matrix
factorization approaches above the current state of the art.
The basic idea is straightforward: suppose we want to opti-
mize a single pair of coefficient aik and bkj , or more gener-
ally suppose we have some joint search direction (∆A,∆B)
over A and B (the case of a single set of coordinates simply
being when ∆A and ∆B have only one non-zero compo-
nent). Then we can consider the problem of optimizing the
objective just over this subspace

minimize
α,β

L(A+ α∆A,B + β∆B) (3)

where α, β ∈ R are our optimization variables. This problem
becomes a quartic polynomial in the two variables, α and β,
which can be solved exactly using sum of squares methods (?,
SOS,)]parrilo2003semidefinite,blekherman2013semidefinite;
alternatively, for this particular case we show the problem
can be reduced to finding the root of a quintic polynomial in
a single variable, and solved exactly using the Durand-Kerner
method (also called the method of Weierstrass) (Durand 1959;
Petkovi et al. 1995) (we show, this approach is often several
orders of magnitude faster than the SOS-based methods).
Using this “exact subspace search” technique, we both derive
a pure coordinate descent approach to matrix factorization
and modify existing optimization approaches to incorporate
this subspace search when adjusting the parameters. For
the case of the pure coordinate descent approach, we derive
an efficient caching mechanism that lets us efficiently



update individual coordinates with minimal passes over the
training data. Our results show that our method improves
substantially over the existing state of the art in terms of
optimization speed, and also allows the methods to more
robustly escape from local optima.

2 Background and related work
Several solution methods have been proposed to solve the op-
timization problem (2) and similar problems. We discuss the
popular approaches briefly, and focus on two recent methods
that are considered as the state of the art by some metrics:
coordinate descent (Pilászy, Zibriczky, and Tikk 2010) and
stochastic gradient descent (Koren, Bell, and Volinsky 2009).

As mentioned previously, problem (2) is nonconvex. How-
ever, when either A or B is fixed, the problem becomes
an convex quadratic with an analytical solution. The al-
ternating least square method (ALS)(Zhou et al. 2008) ex-
ploits this observation and iteratively solves the two least-
squares problems. The ALS is strictly decreasing but has an
O(|S|K2 + (M +N)K3) complexity per iteration, and thus
is not efficient on a large dataset with non-trivial K.

Another increasingly popular method is stochastic gradient
descent (SGD)(Koren, Bell, and Volinsky 2009). For each
update, the SGD randomly selects a pair (i, j) ∈ S and
updates the corresponding variables via

ai := ai−η(λai+Rijbj), bj := bj−η(λbj+Rijai), (4)

where Rij ≡ aTi bj − Sij . The SGD enjoys a O(|S|K +
(M + N)K) complexity per data pass, and several paral-
lel algorithms have been developed (Gemulla et al. 2011;
Recht and Ré 2013; Zhuang et al. 2013). However, it is not
guaranteed to be strictly decreasing and requires fine-tuning
the additional step-size parameter η in practice.

Updating one variable at a time results in the coordi-
nate descent algorithm (Pilászy, Zibriczky, and Tikk 2010).
With proper caching and update order, this method enjoys
O(|S|K + (M + N)K) complexity and is guaranteed to
be strictly decreasing. Surprisingly, the coordinate descent
approach for matrix factorization is fully parallelizable. To
see this, let us fix all the variables except for the variable aik,
the analytical solution for this variable is

aik := CCD(i, b:k, R:/k) = −
∑
j|(i,j)∈S Rij/kbjk

λ+
∑
j|(i,j)∈S b

2
jk

, (5)

where Rij/k = Rij − aikbjk. Note that the update formula
is independent of aik for all i, because Rij/k has no depen-
dence on aik terms. Thus, the update on aik for all i can be
performed concurrently. This extension is called CCD++ (Yu
et al. 2012).

Background on polynomial optimization Although the
nonconvexity of (2) can make it difficult to solve, not all non-
convex problems are intractable. Specifically, optimizing a
polynomial function, including non-convex and multi-modal
polynomials, is a well-studied numerical problem, and there
exist multiple solution techniques that work well in prac-
tice. For example, one well-known approach to polynomial

optimization is via the sum of squares (SOS)(Parrilo 2003;
Blekherman, Parrilo, and Thomas 2013) and moment relax-
ation (Lasserre 2001; Laurent 2009) approach, which approx-
imates the solution of a polynomial optimization problem
by a semidefinite program. For bivariate quartic polynomi-
als (the precise type that will appear in our subspace search
method), the SOS relaxation is exact and we can recover
the exact solution to the polynomial optimization problem.
In addition, there are several approaches for root finding of
single variable polynomials, and we will exploit one of these
methods, the Durand-Kerner approach (Durand 1959), to de-
velop an even faster method for solving the bivariate quartic
optimization problem.

3 Polynomial optimization for matrix
factorization

First, we formally define the subspace search problem (3).
Consider an arbitrary pair of search directions U ≡ ∆A and
V ≡ ∆B. In the subspace search, we want to solve the
optimization problem

minimize
α,β

L(A+ αU,B + βV ). (6)

Expanding the definition of L in (2) and then shifting and
scaling (see Appendix A for details), solving this problem is
equivalent to

minimize
α,β

F (α, β), (7)

where F (α, β) is defined as

1

2
C22α

2β2 +C11αβ+
1

2
C20α

2 +C10α+
1

2
C02β

2 +C01β,

in which C20 and C02 are strictly positive. In particular, as
we show in Appendix A, the coefficients on any possible α2β
and αβ2 terms can be removed. When C22 = 0, the problem
can be solved by a linear equation by taking derivatives on α
and β. Otherwise, with proper scaling, we can assume that
C22 = 1 without loss of generality.

3.1 Solving polynomial optimization
The subspace search problem (7) is in general not convex and
admits local minima. However, it can be solved efficiently
via polynomial optimization techniques. We here demon-
strate two methods that solves the bivariate quartic problem
globally.

Moment relaxation SDP formulation The moment relax-
ation approach to solving the polynomial optimization prob-
lem, which is the dual of the SOS relaxation, is based upon
forming a positive semidefinite moment matrix that consists
of various polynomial degree terms of α and β. Specifically,
define φ = (1 α β αβ)

> and let

Y = E[φφT ] =

 1 y01 y10 y11
y01 y02 y11 y12
y10 y11 y20 y21
y11 y12 y21 y22

 , (8)



where the expectation is over a properly constructed mea-
sure (Parrilo 2003). Then we can solve the semidefinite
program

minimize
Y�0

1

2
y22 + C11y11 +

1

2
C20y20

+ C10y10 +
1

2
C02y02 + C01y01,

(9)

with the guarantee that we are able to reconstruct α∗ and
β∗ of (7) from the optimal solution Y ∗ of (9). This result is
important theoretically, because it provides a basis for the
global solvability of the such polynomial (bivariate quartic)
optimization problems.

Durand-Kerner method In practice, even for a relatively
small polynomial problem, solving the SDP as (9) is slow.
Therefore, instead of solving (7) directly through solving a
SDP, in this case we can transform it to a univariate poly-
nomial and solve this directly using a root-finding method.
Specifically, considering the derivatives of the objective

∇αF (α, β) = β(αβ + C11) + C20α+ C10 (10)
∇βF (α, β) = α(αβ + C11) + C02β + C01 (11)

We can perform a symmetric linear transform and write these
equations as√

C02 · ∇αF (α, β) +
√
C20 · ∇βF (α, β)

= D(t+D)x+D∆+ = 0,
(12)√

C02 · ∇αF (α, β)−
√
C20 · ∇βF (α, β)

= D(t−D)y +D∆− = 0,
(13)

where we introduce the new variables t, x, and y
t = αβ + C11,

x =
√
C20α+

√
C02β, y =

√
C20α−

√
C02β,

(14)

and constants D, ∆+, and ∆−

D =
√
C20C02,

∆+ =
C10√
C20

+
C01√
C02

, ∆− =
C10√
C20

− C01√
C02

.
(15)

Note that C02 and C20 are positive.
Starting now with the equality t − C11 = x2−y2

4D , and
multiplying both sides by (t+D)2(t−D)2 we get

(t− C11)(t+D)2(t−D)2

=
1

4D
((t+D)2x2)(t−D)2 − 1

4D
((t−D)2y2)(t+D)2.

(16)
Applying (12), (13) to the above equality and rearrange the
terms, we can finally write our gradient conditions in terms
of a single quintic polynomial equation

f(t) ≡ (t− C11)(t+D)2(t−D)2

− (
1

4D
∆2

+)(t−D)2 + (
1

4D
∆2
−)(t+D)2 = 0.

(17)
At this point, we can apply the Durand-Kerner method to
solve (17), which takes the form

1. Initialize ti, i = 1, . . . , 5 on a complex disk that will
contain all the roots.

2. While |f(ti)| ≥ ε for any i: repeat

ti ← ti −
f(ti)∏

j 6=i(ti − tj)
, i = 1, . . . , 5. (18)

The Durand-Kerner method generates all 5 (complex) roots
of (17), including all the local minima. We choose the real
root that minimize the subspace search. To guarantee that our
initial disk contains all the roots requires potentially restarting
the Durand-Kerner method multiple times, but in practice
we are able to choose a disk size based upon the highest
magnitude coefficient C and have yet to observe divergence
(and importantly, lack of divergence for the Durand-Kerner
method signifies that we have obtained the exact solution).

3.2 Polynomial coordinate descent
Using this exact bivariate subspace search procedure, we
develop two approaches to solving the matrix factorization
problem. The first is the direct approach, where we extend
a coordinate descent approach to simultaneously optimize
a pair of coefficients aik and bjk, where (i, j) will cycle
through the entries of S. In this setting, our optimization over
α and β becomes

F (α, β) =
1

2
α2β2 +Rij/kαβ

+
1

2
C
i/j
20 α

2 + C
i/j
10 α+

1

2
C
j/i
02 β

2 + C
j/i
01 β,

(19)

where

C
i/j
20 = Ci20 − b2jk, C

i/j
10 = Ci10 −Rij/kbjk,

C
j/i
02 = Cj02 − a2ik, C

j/i
01 = Ci01 −Rij/kaik.

(20)

Ci20 = λ+
∑

q|i,q∈S

b2qk, Ci10 =
∑

q|i,q∈S

Riq/kbqk, (21)

Cj02 = λ+
∑

p|p,j∈S

a2pk, Cj01 =
∑

p|p,j∈S

Rpj/kapk (22)

Although the notation is somewhat cumbersome, these terms
just signify the total C coefficients with the coefficients in-
volves the k terms subtracted out. The advantage to maintain-
ing the coefficients in this form, is that after updating a single
aik, bjk pair, we can update all the coefficients in O(1) time,
by simply adding back the new values. This bookkeeping
allows us to perform a pass over all (i, j) ∈ S (for a fixed k)
in O(|S|) time. The full algorithm with the relevant updating
and downdating, is given in Algorithm 1.

3.3 Polynomial subspace search
Although the direct coordinate descent method is efficient
asymptotically, it still requires substantial computational
work, as it needs to perform polynomial root finding once
for each (i, j) ∈ S , and thus the constant term on the O(|S|)
complexity is quite large. An alternative which often works



for k = 1, . . . ,K do
Rij/k = Rij − aikbjk, ∀(i, j) ∈ S;
Construct Cj01, Cj02 using (22) for all j;
for i = 1, . . . ,M do

Update Cj/i01 , Cj/i02 from Cj01, Cj02 via (20) for
all j;

Construct Ci10, Ci20 by (21);
for j | (i, j) ∈ S do

Update Ci/j10 , Ci/j20 from Ci10, Ci20 via (20);
Solve aik, bjk = arg minα,β F (α, β) with
coefficient Ci/j20 , Ci/j10 , Cj/i02 , Cj/i01 in (19);

Update Ci10, Ci20 from C
i/j
10 , Ci/j20 via (20);

end
Update Cj01, Cj02 from C

j/i
01 , Cj/i02 via (20) for

all j;
end
Rij = Rij/k + aikbjk, ∀(i, j) ∈ S;

end
Algorithm 1: PolyMF-CD

better in practice is to use an alternative matrix factoriza-
tion algorithm to obtain search directions for an entire col-
umn/row of A and B respectively, and use the subspace
search to find the adjustment of A and B in this direction.
The subspace search could be applied to virtually any ma-
trix factorization approach, including gradient descent, ALS,
SGD, and CCD++. In this paper, we adopt CCD++ for the
subspace it outperforms other algorithms in our benchmark
test. Concretely, for a given k we use CCD++ to compute the
coordinate descent direction of an entire row/column of A
and B respectively, and use our polynomial optimization to
find the exact minimum over this joint search direction. The
algorithm is described in Algorithm 2.

Finally, we note that a few technical issues come up when
applying this subspace search to CCD++. We keep tracking
of the function decrease in inner iterations, and skip the inner
iteration early when the function decrease is too small, as
proposed in (Yu et al. 2014). Also, we skip the line search
procedure in the first iteration because the first few steps of
CCD++ is usually very large and avoiding subspace search
provides better initialization. The whole algorithm is also
fully parallelizable like CCD++, and we study the speedup
of parallelism in Section 3.4.

3.4 Convergence
In this section we prove that the PolyMF-CD and PolyMF-
SS (with CCD++ search direction) algorithms converge to
a stationary point. Although this a relatively weak form a
convergence, we know of no previous such guarantees for
coordinate descent methods for matrix factorization (similar
results exist for the cases of alternating least squares and
multiplicative updates).

Theorem 1. Suppose λ > 0. Then every limit point of the
PolyMF with coordinate descent direction and CCD direction
is a stationary point.

for k = 1, . . . ,K do
Remove coordinate k by
Rij/k = Rij − aikbjk, ∀(i, j) ∈ S;
old_a:k = a:k, old_b:k = b:k;
max_func_decr = 0;
for iter=1, . . . , T do

foreach j = 1, . . . , N do
bjk := CCD(j, a:k, R:/k) by (5) ;

foreach i = 1, . . . ,M do
aik := CCD(i, b:k, R:/k) by (5) ;

func_decr :=
function decrease in this inner iteration;

max_func_decr :=
max(max_func_decr, func_decr);

if func_decr < 10−8max_func_decr then break
;

end
U = a:k − old_a:k, V = b:k − old_b:k;
Solve subspace search
minimizeα,β L(A+ αU,B + βV );
a:k := a:k + αU, b:k := b:k + βV ;
Update and restore coordinate k by
Rij = Rij/k + aikbjk, ∀(i, j) ∈ S;

end
Algorithm 2: PolyMF-SS

Proof. Let Ai, Bi be the solution at i-th outer iteration. Be-
cause the method is strictly decreasing, we have

λ(‖Ai‖2+‖Bi‖2) ≤ L(Ai, Bi) ≤ L(A0, B0), ∀i = 0, 1, . . . .
(23)

Thus, the sequence {(Ai, Bi)} is bounded. By Weierstrass’s
sequential compactness theorem, every bounded sequence
in a Euclidean space has an converging subsequence. Let
(A∗, B∗) be any of the limit point of the converging subse-
quence.

Now we demonstrate how to use the optimality condition
for subproblem to construct a global condition for a stationary
point. For the PolyMF with coordinate descent direction,
(A∗, B∗) is a fix point means that, taking derivative on (19),

∇αF (a∗ik, b
∗
jk)

= a∗ikb
∗2
jk +Rij/kb

∗
jk + C

i/j
20 a

∗
ik + C

i/j
10 = 0, ∀(i, j) ∈ S.

(24)

Expanding the definition of Ci/j10 , Ci/j20 , and Rij/k, we obtain

λa∗ik +
∑

q|i,q∈S

Riqb
∗
qk = 0, ∀i, k. (25)

By the same reasoning on∇βF , there is

λb∗jk +
∑

p|p,j∈S

Rpja
∗
pk = 0, ∀j, k. (26)

Equations (25) and (26) means that the gradient of the full
problem (2) vanishes on (A∗, B∗), because the definition of



M N |S| |Stest| k λ
Movielens10m 71,567 65,133 9,301,274 698,780 5 0.01

Netflix 2,649,429 17,770 99,072,112 1,408,395 10 0.05
Yahoo-Music 1,000,990 624,961 252,800,275 4,003,960 10 1

Table 1: The statistics and parameters for the datasets.
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Figure 1: The comparison of L− L∗ in terms of time.

the gradient is

∇aiL(A,B) = λai +
∑

j|(i,j)∈S

Rijbj = 0, ∀i, (27)

∇bjL(A,B) = λbj +
∑

i|(i,j)∈S

Rijai = 0, ∀j. (28)

Thus, (A∗, B∗) is a stationary point. The same reasoning can
be also be applied to the proof for CCD++ steps.

4 Experiments
We evaluate the PolyMF algorithm (both the coordinate
descent and subspace search approaches) on several
benchmark problems in recommender systems. In particular,
we consider three datasets: Movielens10m, Netflix (Bell
and Koren 2007), and Yahoo Music (Dror et al. 2012),
from smaller to larger. See Table 1 for the dimensions
and parameters for each dataset. We first analyze the
optimization performance of our methods versus existing
state-of-the-art approaches in terms of minimizing the matrix
factorization objective, and we then discuss analyses of
different additional aspects of the problem. We choose
regularization parameter λ as shown in Table 1, and focus
our analysis on the optimization performance compared to
the following algorithms:

LIBMF This package (Zhuang et al. 2013) imple-
ments a parallel SGD algorithm for matrix factorization with
adaptive gradient steps (Duchi, Hazan, and Singer 2011). We
use its default parameters for learning rate and step-size be-
cause the package is already fine-tuned for the above datasets.

CCD++ This package (Yu et al. 2012) implements a
parallel coordinate descent method for matrix factorization.
We use its default parameters because there is no need to
tune the step-size by the nature of coordinate descent.

polyMF-CD This is the pair-wise coordinate descent
method proposed in Algorithm 1, in which we perform an
optimal subspace search on each pair of coordinate (aik, bjk).

polyMF-SS This is the subspace search method pro-
posed in Algorithm 2, in which we perform an optimal
subspace-search on the CCD++ directions.

We conduct the experiments on a Intel Core i7-4790 ma-
chine with 32 GB memory. All experiments except the paral-
lel speedup utilize 4 cores of the total 8 cores available.

4.1 Results on matrix factorization benchmarks
Figures 1 and 2 show the evolution of the objective function
L − L∗ (where L∗ is measured as the best objective found
by any of the methods) as a function of running time and iter-
ation count. For all three data sets, the PolyMF-SS algorithm
outperforms LIBMF and CCD++ in terms of final objective
value and running time versus objective. For example, in the
Movielens10m dataset, as shown in Figure 1(a), the PolyMF-
SS algorithm actually escapes the local optima that CCD++
converges to, and reaches a substantially lower final objective.
In all examples, the convergence to this objective is faster,
with the largest gains present on the Netflix example. The
PolyMF-CD algorithm here is substantially slower by total
time (the time needed to perform a polynomial optimization
over each coordinate is prohibitively large), but we show
performance per iteration on the smaller Movielens10m data
set.

4.2 Comparative analysis
Finally, we analyze a few additional aspects of the algorithm,
such as the comparison between the SDP polynomial solver,
the data efficiency of PolyMF-CD and the parallel scaling
performance of the different algorithms.

Comparison of Kerner Method and SDP We test the two
polynomial solvers over 1 million iterations of the inner
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Figure 2: The comparison of L− L∗ in terms of the number of iterations.
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Figure 3: Parallel Speedup

polynomial solve. The moment-based SDP approach takes
1.430 · 10−4s± 3.4611 · 10−6s (average and standard devia-
tion) to solve each problem, while the Durand-Kerner takes
2.0406 · 10−6 ± 5.1434 · 10−7s, an improvement about 70
times.

Data efficiency of PolyMF-CD The implementation of
CCD++ requires 4 data pass per iteration. Our subspace
search method, polyMF-SS, only requires 1 more data pass
than CCD++ but saves more iterations. However, both meth-
ods require maintaining the transpose of the score matrix, or
more precisely, iterating over rows and columns of S. This
might be cubersome when the data is too large to be store
in the main memory. On the other hand, the PolyMF-CD
algorithm requires similar number of data pass and do not
need to maintain the transpose matrix.

Parallel performance Finally, we emphasize that because
PolyMF-SS spends the bulk of its running time in computing
the search directions U and V (using any desired method,
though here we use CCD++), the PolyMF-SS inherits the
computational advantages of the underlying search direction
algorithm. Thus, when applying our PolyMF-SS algorithm
to the Netflix and Yahoo Music domains, the speedup of the
methods with additional cores is roughly identical to that of
CCD++, as shown in Figure 3 (results on Movielens10m are
not shown, as the dataset is too small to obtain substantial
speedup).

5 Conclusion and future work
In this paper, we have derived and presented a polynomial
optimization approach to matrix factorization. Specifically,

we have shown that one can perform an exact subspace search
over joint update directions in both A and B terms, by solv-
ing (exactly) a quartic polynomial optimization problem. We
have discussed several approaches for applying these meth-
ods in either a direct coordinate descent fashion or in a sub-
space search fashion to speed up existing matrix factorization
approaches. We show that the resulting methods attain faster
objective convergence, while also being able to escape local
optima that trap alternate approaches.

In future work, we aim to extend these approaches be-
yond the case of simple matrix factorization to richer settings
such as tensor factorization approaches (Kolda and Bader
2009) or factorization machines (Rendle 2012). Both these
methods have received significant attention in recent years,
yet they suffer from similar local optima problems as our
matrix factorization setting, and thus seem ripe for similar
approaches.
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A Proof on transformation of (7)
In this section, we will show that any subspace search prob-
lem can be reduced to (7), with the coefficients of the α2

and β2 terms being positive. Consider subspace search on
arbitrary pair of direction U and V ,

minimize
α,β

L(A+ αU, B + βV ). (29)

Expand the definition of L in (2), we have
1

2
L(A+ αU, B + βV ) (30)

=
λ

2
(

M∑
i=1

‖ai + αui‖2 +

N∑
j=1

‖bj + βvj‖2)

+
1

2

∑
(i,j)∈S

((ai + αui)
>(bj + βvj)− Sij)2 (31)

=
1

2
C22α

2β2 + C21α
2β + C12αβ

2 + C11αβ

+
1

2
C20α

2 + C10α+
1

2
C02β

2 + C01β, (32)

where
C22 =

∑
S (u>i vj)

2,

C21 =
∑

S (u>i vj)(u
>
i bj),

C11 =
∑

S (u>i vj)Rij + (u>i bj)(v
>
j ai),

C12 =
∑

S (u>i vj)(v
>
j ai),

C20 =
∑

S (u>i bj)
2 + λ

M∑
i=1

‖ui‖2,

C10 =
∑

S Rij(u
>
i bj) + λ

M∑
i=1

u>i ai,

C02 =
∑

S (v>j ai)
2 + λ

N∑
j=1

‖vj‖2,

C01 =
∑

S Rij(v
>
j ai) + λ

N∑
j=1

v>j bj . (33)

Note that we denote
∑

(i,j)∈S as
∑
S for simplicity. If

C22 = 0, we have u>i vj = 0 for all (i, j) ∈ S. This case,
C21 = C12 = 0 and the minimization of L can be solved by a
linear equation. Otherwise, we show that we can remove C21

and C12 by some transformation, and the resulting equation
will satisfy the constraint of (7).

Let α̂ = α+C12, β̂ = β+C21. Normalize every constant
C·,· by C22 and denote them as Ĉ·,·, we have

1

2C22
L =

1

2
α̂2β̂2 + (Ĉ11 − 2Ĉ21C12)α̂β̂

+
1

2
(Ĉ20 − Ĉ2

21)α̂2 +
1

2
(Ĉ02 − Ĉ2

12)β̂2

+ (Ĉ10 + 2Ĉ12Ĉ
2
21 − Ĉ11Ĉ21 − Ĉ12Ĉ20)α̂

+ (Ĉ01 + 2Ĉ21Ĉ
2
12 − Ĉ11Ĉ12 − Ĉ21Ĉ02)β̂

+ constant.

This way, the problem has been reduced to (7). Now we
examine the positivity of the coefficient for α̂2. Observe that

Ĉ20 − Ĉ2
21 =

∑
(i,j)∈S(u>i bj)

2 + λ
∑M
i=1 ‖ui‖2∑

(i,j)∈S(u>i vj)
2

−

(∑
(i,j)∈S(u>i vj)(u

>
i bj)∑

(i,j)∈S(u>i vj)
2

)2

. (34)

By Cauchy inequality, we have ∑
(i,j)∈S

(u>i bj)
2

 ∑
(i,j)∈S

(u>i vj)
2


≥

 ∑
(i,j)∈S

(u>i vj)(u
>
i bj)

2

.

(35)

Thus,

Ĉ20 − Ĉ2
12 ≥

λ
∑M
i=1 ‖ui‖2∑

(i,j)∈S(u>i vj)
2
> 0. (36)

Similarly, the coefficient Ĉ02 − Ĉ2
12 for β̂2 is also positive.

B Example of local minima
Consider a toy problem of 2 scores, {10,−10}, with A ∈
R1×1 and B ∈ R2×1.

L(A,B) = (a2 + b21 + b22)/2 + (ab1 − 10)2 + (ab2 + 10)2.

Fixing b2 = 1, we can see that the function plot for (a, b1)
contains exactly two local minima (Figure 4), and only one
of which is the global minimum.
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Figure 4: plot of L(a, (b1, 1))

Further, the difference between the two minima can be
arbitrary large by scaling the scores. Thus, if not properly
initialized, both CCD++ and SGD may stuck at the local
minima, but our polyMF method will always converge to
global optima because we did an exact subspace search. This
is one scenario that our method performs better than the other
state-of-the-art methods.


