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Summary

The paper presents the first assumptionless proof that a low-
rank SDP method converges to a global optimum for constrained
SDPs despite its non-convexity. The experiments suggest the proposed

method is 10~100x faster than the state-of-the-art methods.
Problem

mgﬁ@rg}ize %:cijﬂvi —v|[* st ||vi]| =1, Vi=1...n.

Intuitively, maximize the sum of weighted distances between vertices.

The problem is non-convex, and zero gradient (critical pt) # optimum.

Goal: Can we optimize on the manifold and still reach global optimum?

Application

- Diag constrained SDP (low-rank X = V!V <= X > 0)

maximize Y ¢;i|lvi—v;||* s.t. [|vs]| = 1 <= minimize (C, X) s.t. X;; = 1

L]

- MAXCUT (Goesman-Williamson SDP relaxation)

- MAXSAT (Minimize convexified loss)

The Mixing methods

Main ideas:

 Randomize init = unlikely to reach unstable criticals.

- BCD: Move one vertices v; at a time = closed-form solution.

minimize g; v;, s.t. [vill =1 = v = —g/||gl
UZ'ERk

The Mixing method = Mix and normalize neighbors Vv;.
« Initialize v; randomly on a unit sphere (e.g. normalized uniform).

= While not yet converge :

. For:=1...n:

. v = —gi/||gil|, where g; =" cijv; ;
Adding step size (technical):

= Instead of exact BCD, use v; := (v; — 0¢;)/||vi — 09

« Avoid degeneracy (|/g;|| = 0), which never happens in practice.
Convergence analysis:

- Low-rank = low-memory complexity (V € R v.s. X € R™ "),

« Converge to global opt: observed in exps, open prob for 17 yrs.

= Difficulties:

+ Non-convex (spherical manifold dom), rotational equivalence.

x Random initialization required.

x oingularity of Jacobian and Hessian.

Lyapunov instability and stable manifolds

Instability: the operator has expansive direction V non-opt criticals.

« Figenvalues of Jacobian on manifold contain those in Euclidean

« Jacobian of Gauss-Seidel is unstable when not PSD (|\;| > 1).

« All non-optimal criticals corresponds to a G.-5. on non-PSD system.

« Thus, the Mixing methods are unstable on non-optimal criticals.

Center-stable manifold thm: Existence of invariant manifolds.

- Mixing method with step-size is a diffeomorphism (1-to-1 and C').
« Apply center-stable manifold thm: basin to unstable is 0 measure.

« That is, random initialization never converges to unstable criticals.

« Converge to critical and never to unstable = converge to global opt.

Figvals(A ® I diag(I — vv; )B ® I;.) O Eigvals(AB) for k > v/2n.
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Theoretical results

 (All non-optimals are unstable) Pick k£ > +/2n. For the

Mixing method with step size (no assumption) or without step size
(nondegeneracy assumption) all non-optimal first-order critical
points are unstable fixed points for almost all C

- (Convergence to global optimum) Take £ > +/2n and

0 € (0, max-1||c-||1)' Then for almost every ', the Mixing method with

a step size converges a.s. to a global optimum under random init.

« (Local linear rate) The Mixing methods converge linearly to the

global optimum when close enough, with step size (no assumption)
or without step size (nondegeneracy) = Overall O(m+/nlog(1/¢)).

Experiments

« MAXCUT SDP (10~100x faster than state-of-the-art, million vars)
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- MAXSAT approximation ratio (avg 0.978, faster & better than LP)
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